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A Theory of Laminated Composite Plates and Rods

by

A. E. Green and P. M. Naghdi
Mathematical Institute, Oxford and University of California, Berkeley

Abstract. This paper is concerned with small deformations of a class of

laminated layered composite plates and a class of laminated layered

composite rods utilizing a direct formulation of thermomechanical theories

of shells and rods. The paper is arranged in two parts, namely Part A (for

laminated composite plates) and Part B (for laminated composite rods), and

can be read independently of each other. In each part, after providing

the main ingredients of a direct formulation, fairly general linear

theories are developed which include both dynamical and thermal effects.

Some applications to sandwich plates and layered rods are discussed in

detail.



1. Introduction

Among the many types of composite materials which have been studied,

layered media have received much attention. One group of such

media consists of a large number of alternating plane parallel layers of

two homogeneous and usually isotropic, elastic materials. Three main

approaches have been used to construct theories to describe their mechanical

behavior. One, termed the effective modulus theory, consists in replacing

the composite by a homogeneous anisotropic medium whose material constants

are determined in terms of the geometry and material properties of the

constituents of the composite. The second, called the effective stiff-

ness theory, yields more detailed information about the composite than the

effective modulus theory; and is expounded, for example, by Sun, Achenbach

and Herrmann (1968) with extensions by Drumheller and Bedford (1973). This

theory also has some connection with microstructure theories as shown by

Herrmann and Achenbach (1968) and Achenbach (1975). The third, discussed

by Stern and Bedford C1972) is based on a multi-continuum theory for

closely coupled mixtures.

Another class of layered media consists of multilayered shells and

plates. The earliest theory used for these seems to have been of the

effective modulus type for elastic composites, which gives useful, but

limited information about the behavior of the composites. A different

approach, used by Malcolm and Glockner (1976) for a three layered iso-

thermal, elastostatic sandwich shell and by Epstein and Glockner (1977)

for an n layered elastostatic shell involves a single surface and a

single director, or n directors, respectively, one associated with each

layer of the sandwich, together with the use of variational procedures.

Another type of theory given by Epstein and Glockner (1979) models the

elastic shell by a surface and n directors associated with the surface,
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and again employs variational methods. Here there is considerable dif-

ficulty in identifying the elastic coefficients of the sandwich shell or

plate in order to render this theory useful for specific problems.

The effective modulus or classical theory for laminates consisting of

linear elastic material, has been extended to a higher order theory by Lo,

Christensen and Wu (1977,1978) and has been discussed also by Christensen

(1979). This theory utilizes one expansion for displacements throughout

the laminates, whatever the number of laminates, together with a variational

procedure, and has been derived for statical problems under isothermal

conditions. Displacements and stresses are continuous at the interfaces

and the theory yields more detailed information than the classical theory.

A different higher order theory given by Pagano (1978), again is limited to

statical problems under isothermal conditions. Pagano (1978) assumes stress

distributions for each laminate which satisfy appropriate surface conditions

at interfaces, and derives the displacement fields and equations of equi-

librium with the help of a variational procedure.

With the use of an expansion procedure, Hegemier and Bache (1973)

have discussed special types of one-dimensional motions in a plate with

isotropic layers. Similarly, Fourier integral methods were used earlier

by Buffer (1971) for infinite plates with isotropic layers.

In the present paper a different approach from those noted above is

used to obtain a linear theory of elastic sandwich plates, one which is

available for dynamical problems and which allows for thermal effects.

The method used can also be applied to sandwich type shells and to materials

which are not necessarily elastic. The theory of plates and shells for

single phase media has a long history - see, e.g., Naghdi (1972). In

recent years considerable attention has been given to direct two-dimensional

theories from a thermodynamical point of view where temperature effects

2.



along the major directions of the plate or shell are considered. The full

thermomechanical theory for plates or shells in which temperature effects

across the thickness, as well as along the major surfaces, are incorporated,

has been given by Green and Naghdi (1979a). In particular, the linear

thermoelastic theory for a plate is studied in detail (Green and Naghdi

1979a) and all the thermoelastic coefficients for an isotropic plate were

found in terms of the three-dimensional coefficients. This theory, extended

here to orthotropic plates, is immediately available for each individual

member of a sandwich type plate (or shell), together with appropriate

conditions to ensure continuity in displacements and surface forces at

interfaces, or appropriate specified values for surface forces or displace-

ments if other conditions prevail at interfaces. The final form of the

theory has some similarities to that given by Pagano (1978) when the

results are specialized to the isothermal static case. It does not,

however, yield immediate values for the actual stress distribution in

each laminate, but is concerned with force resultants and higher order

couple resultants. These, if desired, can be used to obtain approximate

values for stresses by a procedure similar to that of Pagano (1978).

In a similar way, the complete direct formulation of a thermoelastic

theory of a rod with rectangular cross-section, which has been developed

by Green et al. (1974) based on earlier work on the subject (Green and Laws

1966,1973), is employed in Part B (sections 10-14) to study the behavior

of laminated composite beams in which each layer of the composite is a plane

rod (or a beam) of rectangular cross-section with different orthotropic

properties. Although our main developments for composite rods are limited

to a linear isothermal theor/, the same approach together with the use of

recent results for nonisothermal rods CGreen and Naghdi 1979b) can be used

to account for thermal effects and a more general formulation of composites

3.



in the presence of finite deformation. A different approach from that

given here for rods has been used by Dbkmeci (1973) who considered a

nonlinear isothermal theory of elastic, composite beams based on an

expansion for displacements in each layer together with a variational

approach for obtaining equations of motion. D6kmeci (1973) obtains his

constitutive equations for force resultants from the energy equation in

the three-dimensional theory but this portion of his work suggests some

doubt about the values of some of his constitutive coefficients especially

those for flexure.

Specifically, the contents of the paper are arranged in two parts and

can be read independently of each other: One part (Part A) is concerned

with the linear theory of laminated layered composite plates and the other

(Part B) is devoted to the linear theory of laminated layered composite

rods. In Part A Csections 2-9), first a concise summary of the basic

equations of the linear theory of orthotropic elastic plates, constructed

by a direct approach via the linearized theory of a Cosserat surface with

a single director, is given and this is followed (section 3) by a cor-

responding summary of a restricted linear theory of plates by direct

approach. Next, the developments in sections 2 and 3 are used to formulate

a linear theory for a laminated plate containing N laminates each consisting

of a plate of homogeneous orthotropic material of constant density and

thickness and each at constant temperature along with appropriate

continuity conditions for the tractions and the displacements at the

interfaces.

The results in sections 4-6 are specialized to composites with three

laminates and are applied to a number of cases, which include the thermo-

static problems of the torsion of a three layer laminated rectangular plate

in the context of thermo-statics, the study of harmonic waves and the case
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of periodic force resultant distribution in a stratified medium consisting

of a large number of alternating parallel layers of two homogeneous

orthotropic materials.

In Part B (sections 10-14), first a concise summary of the basic

equations of the linear theory of orthotropic elastic rods, constructed
by a direct approach via the linearized theory of a Cosserat rod, is

given. These are then applied (sections 12-14) to some simple static solutions

for composite rods and harmonic wave propagation along the composite rod.

I
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Part A. Laminated Layered Composite Plates

2. Basic equations of the linear theory of orthotropic elastic plate

Consider a plate of constant thickness h, constant density p and at

constant temperature T, bounded by the planes z= ± kh, where x. = (x,y,z) are

rectangular Cartesian coordinates, with unit vectors e. along the x.-axes.

The plate has homogeneous orthotropic symmetry with respect to the z-axis

and two axes orthogonal to the z-axis. The basic equations for the deforma-

tion of such a plate have been given in a number of previous papers and, in

particular, in the monograph by Naghdi (1972) which also contains values of

the mechanical constitutive coefficients for a linear isotropic, elastic

plate (Naghdi 1972, Ch. E). The full thermodynamical coefficients for an

isotropic, elastic plate have been given by Green and Naghdi (1979a). The

main equations and constitutive coefficients are summarized below in Cartesian

tensor notation with Greek indices taking the values 1,2. Partial dif-

ferentiation with respect to x is denoted by ( ),a and a superposed dot

denotes partial differentiation with respect to time.

We recall that a Cosserat surface C comprises a material surface s and

a director assigned to every point of the material surface. In the reference

configuration, let the material surface be a plane SR which we identify with

the middle plane z =o of the plate described in the preceding paragraph.

Let u and 6 denote, respectively, the infinitesimal displacement vector and

the infinitesimal director displacement of 5 R (or the plane z z o). Then,

referred to the basis ei, u and 6 may be expressed as

u=u e +ue , = L e + 6e3 (2.1)

6.



and the strain measures are

e -2(U +u U )ct,8 ,t a3at 6 3,a
(2.2)

Pa ct,8 = + 3a

We denote the temperature change in the plane SR by 8 and the temperature

change along the thickness of the plate by 4.

The contact force vector N, the contact director force vector M, the

internal force director m and the entropy fluxes k,t are given by

N =(Nae! e+Vae 3)v a M =(M e46+M e33)v a J

(2.3)
~~~~m Ve e v 3  , k :pv ,£ &

T= a '3!3 ac aPCL~

where v= vae is the outward unit normal to a curve in the (x,y) plane in a

specified direction. The force vectors ut,.t on the major surfaces z=±-h,

respectively, in terms of their components are given by

-t= t +t 2 t = te + (2.4)u~ ut e. u3e.3 , t-ct £t3e3(24

and uk , k are the entropy flux vectors, respectively, at these surfaces.

Then the field equations for forces and entropy fluxes, in which body forces

and entropy sources are zero, are

N a t + t = ouNtB,ct utB £t8 8u

M 3, a -V + h(+ t 1 t ) =t 3Z 3  , (2.5)

-p - uk - k =pn

7.



Ml$' -V 3, h ( ut Z aBM B~aV8 + h~ut- Z t8 ) -- pc 6B ,

V +t+t "ii (2.6)Vi,ct ut3 £t3 u3

-p +P I - h(u k k ) n

where n,n, are entropy densities and is an internal rate of production of

entropy.

The desired thermoelastic constitutive equations for an orthotropic

plate can be derived from a Helmholtz free energy function i of the form

2p = A'ee e + 2A ea 1 f 3 +A(6 3 ) 2 + EXP 3 P3

+ Daap p + DxyYXy u

+ 2B63e + 2B Pe + D2

2
+ 2FxU + F 2  (2.7)

where for compactness we have designated the usual Cartesian tensor

constitutive coefficients A D , as A 8X D defined by

ALB  8ac BnAT DaB  3aE D n)l
c 54 c:Ai' 4' 4

A Nl 6 8A D4

(2.8)
11 22 12 21
6 =6 = ,6 =6 0

Also, the Cartesian tensor components of the thermoelastic coefficients

satisfy the symmetries

A -4X1 A -Av %6 = , Xa AX =A
(2.9)

AcXi D j al , D A , Bx A B PA

The corresponding constitutive equations are

8.



N A Xe +A B +B ,NaB aa Xp a6 A 3B a

V = A e +A6 +Be , M = Ep , (2.10)
aa 3 c.3 ax 3X

pr =- (B6 3 + B 0e B+D) pa =a a XOX

and

M = p F , V =0 y6 -b

(2.11)
1

Pn1  (

4The various coefficients are given below in terms of three-dimensional

coefficients of linear orthotropic elastic materials for the case in which

the coordinate axes may be at an angle with the principal directions of

orthotropy in the plane.

In order to introduce the relevant three-dimensional constitutive

coefficients we recall that the (three-dimensional) constitutive equations

for the stress tensor tij, entropy n , heat flux vector q and entropy flux

vector have the forms

t.. c..e -c..8* , Pn = c. .e..+ p (c/e)e
13 j rs 13 1j 1j

(2.12)q* .gp* * * , di/ *[

p= ~ p = piei , pi = " (d .16e,

where e.. and a are, respectively, the strain components and temperature in

the three-dimensional theory, and Latin indices have the values 1,2,3. Again,

instead of the Cartesian tensor coefficients c irs' for compactness we have

used the notation cJr defined as
rs

~9.



c.i = 6 im6 Jncrs imfrs
(2.13)

611 =622 = 653 = I , 6 i j = o for iAj

Also, the various coefficients in (2.12) and (2.13) satisfy the symmetries

Cijrs = Cjirs = Cijsr = Crsij , cij = cji , dij a dji. (2.14)

In the special case when the principal axes of orthotropy coincide with the

coordinate axes, the non-zero components, distinguished by a prefix o, are

11 11 11 22 33 33 12 23 13

o 11 ' oc22, oc33
' oc22

' oc2 2, oC33, oc1 2
' oc23, oc1 3 '

(2.15)

oc11 , 0 c2 2, oC3 3, 0 dl1
, od22, od33,

together with the values given by (2.14). When the axes of orthotropy in

the x,y plane are at an angle (say X) to the coordinate axes, the non-zero

coefficients are

11 11 33 22 33 33 12 23 13
c11 , c 2 2 , C11 , c22 , c22 , c33 , c1 2 , c2 3 , c 13,

11 12 33 13
C1 2 , c2 2, c12 , c2 3, c11, c2 2, c3 3, c 1 2 , (2.16)

d11 , d22 , d33 , d12 , d

together with the values given by (2.14). The values of the coefficients

(2.16) may be expressed in terms of the coefficients (2.15) by two-

dimensional tensor transformations between

ct 33 a3
, cta , c 3, ca ,d

and (2.17)
ct 33 a3

0 C , oc o3,c Ca , oda ,

respectively, together with

10.



33 33
o 33d (2.18)33 = oc33  , c33 = c33  , d33 = d33

In order to specify the constitutive coefficients in (2.10) and (2.11)

in terms of the three-dimensional coefficients (2.16) it is simplest to use

axes which coincide with the coordinate axes x,y and relate simple exact

solutions of three-dimensional elasticity with solutions of the equations

(2.5), (2.6), (2.10), (2.11). Coefficients with respect to general axes

in the xy plane may then be found by appropriate tensor transformations.

The results are

33 33
A XP , A -hca8 hcL A = hc33

E 8h 3 6 cX3, p= p h B =hca , hc

(2.19)

D- pch/ , a, =hd aa /e

11 22 =1 12 = 21 0

and

a$ 33

cc3-- Lh3 (c h 2 3 V

S= 0 h6S c8 3  , c h

33
=c1 3- 33) ,)  (2.20)F8B  1 -h (ca 3

33

h 1 h 3

33 ' b8 12 -  d3

An approximate comparison with the torsion problem for a plate, or an exact

comparison with one of the flexural modes of wave propagation, leads to the

11.
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choice r= 2/12 for T. This is approximately 5/6, the value specified in

previous papers. The value of 8 is much more dependent on the particular
7

problem chosen as a basis of comparison. Here we choose 8=I- as in

previous papers.

For one purpose below we require equations of the form (2.12) for a

plate which has symmetry of structure at any point only with respect to

directions normal to the middle surface, i.e., in the z-direction, but

does not necessarily have symmetry with respect to the x and y directions.

The non-zero coefficients in (2.12) are then the set given by (2.16),

(2.13) and (2.14).

12.



3. Summary of a restricted linear theory of plates

In addition to the theory summarized in section 2, in subsequent

sections we wish to consider also the use of a system of equations which

correspond to those of a classical (Poisson-Kirchhoff) linear theory for a

plate.having symmetry with respect to directions which are normal to the

plate but which is not necessarily orthotropic. These equations may be

obtained from the present equations by a limiting or approximate procedure.

Alternatively, they may be derived from linearization of the restricted

theory discussed by Naghdi (1972, Secs. 10,15), but extended here to account

for full thermal effects and expressed in a slightly more general form. The

plane faces of the plate are given by z=a, z=a+h where a is constant.

Again, we identify the material surface S R in the reference configuration

with the plane z = 0, which is any suitable reference plane in the

plate. In the restricted theory the director is coincident with the outward

unit normal to the plane SR so that 6= =a a, -= u3 ,, while the

infinitesimal displacement u is still given by (2.1)1. The relevant field

equations in the restricted linear theory are

N + t + "t =Pu t 3 t 3 0Nt8,cL ut8 £8 = 8u u3 £t3

-pa - uk "£k =Pn,

M -V+ (a+h)ut +a t = 0 (3.1)

Vaa+ u3 t3 u3

hk - k*-a Z = pr1

where for a plate which has symmetry only with respect to the z-direction

13.



Pn =-(Be + F P + D8 + D/) (3.2)

pa ctaX AaxA

and

ct8B D~jp~p +Aa 8 U ct6 a

PTl 2 (F p +B e + FO+ D/e

(3.3)
-b b/

Pa = u3,a8

Also V is not now determined by a constitutive equation. The various coef-

ficients may be specified in terms of the coefficients (2.14) by studying

simple problems which have exact solutions in three dimensions. For later

convenience we assume here that the coefficients (2.14) are functions of z.

Thus

14.



-o~h a~ CIBd
A/ P I zd

a/ha =aah chd

ahC dz 'ah C zdz
a (4~ fa 8= c

fahCdz 51 ' a C zdz

(3. 4a)ta+h h
= a d dz d =c8 yf+dzdz

= f a+hCx z- d a+h z2 d

a~

Fa=hfC z 2dz , ~ d~ z 2dz

- 1 a+h d d

where

aS 33

caa aa 33_____

33

33

C - 33 (3 4b)
C3 3

C3 3

15.



4. Laminated plate

We suppose that the plate contains N laminates each consisting of a plate

of homogeneous orthotropic material of constant density and thickness and each

th
at constant temperature e. A typical laminate, the n , has constant density

*

pn and thickness hn and lies between the planes z =H n ± hn where Hn is

constant, and each laminate is glued to its neighbours. Hence

Hn+ 1 - Hn = !(hn+ 1 +h n) (n =l,2,...,N-l) (4.1)

The principal directions of orthotropy of the nth laminate are at angles en

to the x and y axes; without loss of generality one value of £n (n= 1,2,...,N)

can be taken to be zero. The thermoelastic coefficients for the nth laminate

are denoted by the symbols used in (2.12) with an additional prefix n; thus
nc n n d  n
nc' cijn ij c and the relevant coefficients are specified by (2.13),

(2.14) and (2.16). These coefficients may be expressed in terms of the

principal values (2.15) and the angle en by the usual tensor transformations.

Each laminate is assumed to be governed by plate equations of the type

given in section 2 with constitutive coefficients specified by nc nF,

n b06. These, in turn, are given in terms of the coefficients in (2.16) by

formulae of the type (2.19) and (2.20), each coefficient having the prefix n

as in n cO The displacement of the middle plane z =H of the nth laminate
X1" n

together with its associated director displacement, are denoted by

n n n n n
n -a u3-3 -n e+33 .(4.2)

The two temperatures associated with the laminate are denoted by an'n. Since

displacement and temperature are continuous at each glued face of the laminate,

it follows that

16.



2u -- 2h 6 =U + -hZ
n;l ln+l l.j- n-n

(na=,2,....N-l) (4.3)
0nl h 1  1 =8 + hn~n6 n+1  - -2 h n+lon+ 1  a n  + o

The forces acting on the faces z = H 
n  hn of the n laminate are

t n n £ n n

n = tne + ut3ne ' = t n + te (4.4)

and the corresponding entropy fluxes are uk *nk *n . Because forces at the

boundary of two laminates are equal and opposite and entropy fluxes are

continuous, we have

n n+l *n *n+lSt +  = 0 , k + k =0 (n= 1,2,...,N-l) (4.5)

Forces, entropy fluxes and temperatures at the outer boundaries z =H 1 - hi
z= HN + h hN of the plate are respectively'

*1  Nh aN *N

z.I . k , 8 1 h I  and U t uk  a N+ hNON (4.6)

Although we have considered only surface conditions for laminates

attached continuously to its neighbors, the above conditions may easily be

modified to allow for other interfacial conditions. Force and director

force vectors and tensors, entropy fluxes, vectors and densities, etc., for

the nth laminate are denoted by the symbols used in section 2 with an addedNn n n n In

index n. Thus, e.g., we have N' e ' N'  ... nn 'I n a . The equations of

motion and entropy balances for the nth laminate are of the same form as

(2.5) and (2.6) with the added index n, so that

17.



Nn n t n. . .-n

n
NO --V + h (tn t n (4.7)

t3,autn+u 3  3 nn.n

n *n k*n =n n

- , +  - k n - ) = Pn l
u nn

,n +t n n n n (4.8)

In n *n n

- +n B  h ( n k nk )= n,

for n=i1,2,...,N. The constitutive equations are

n n X~tn n n n
Na= Ae a6 6+B n

3nX8c 3. n n c= nD  n !n n n n n n

Pn 3- OLn  n pont =-i nX

In nPa b- baF' n,X

Equations (4.3) give N-1 relations between the 2N variables un 6n

(n= 1,...,N) so that some restriction is placed on the freedom of choice of

boundary conditions at the edges of the plate. To determine possible choices

of boundary conditions we consider the rate of work of external 
forces Nn

and external director forces Mn which is

N
R = Nn " U M

n . ~n (4.11)

n=1 - n

18.



Now, from (4 2) we have

2 = (h 2 62 +h 16l ) + u

n-i (4.12)

u= uI +!(hn +h 1 1 ) + h 6  (n=3,... N)
r=2

so that (4.11) may be written in the form

N n N
R U Z Nn+ 6 (Ml + hi Nn )

- n=1 1 n=2

+ &N M+ hN?

N-i N
+ E n • n+1 h nhNn+h E N) (4.13)
n=2 ~ r=n+l ~

The expression for R indicates that boundary values may be chosen for

iI ..... N or their coefficients in (4.13).

Similarly, in view of (4.3), some restriction is placed on the freedom

of choice temperature or entropy flux boundary conditions at the edges of

the plate. The total heat flux at an edge

N
h = E (k n +,n. n)

n=l nN N
N8 n 1N n N, N

6 1 E kn +  ( Z1 + 1 hI1 E kn  N (ZN + ! hn kN

n=l n=2
N-1 N

+ E (z£n+' h kn + h E k) (4.14)
n=2 n n r=n+l

Boundary values may be chosen for 614 1, .... N or their coefficients in

(4.14). Alternatively, N+l boundary conditions of a suitable type may be

prescribed at each boundary.

The above theory of laminates provides values for Nn Ni ,n V- but not

As is customary, through appropriate definitions of stress resultants
(see Naghdi 1972, Secs. 11-12), the quantities NnsI; , ,V may be
interpreted as membrane force resultants, bending moments and trans-
verse shear resultants, respectively.

19.



for stresses. [In fact, any plate (or shell) theory, whether constructed by

a direct approach or derived from integration of the three-dimensional

equations across the thickness of plate (or shell), can only involve forces

or resultants and not the components of the stress tensor.] Information

about the latter, if desired, may be obtained by introduction of an

additional assumption. In particular, in the context of the present paper,

some estimation of the three-dimensional stress distribution across each

laminate may be obtained by a procedure similar to that used by Pagano

(1978). Approximate expressions for the in-plane stress components t
n

for the nth laminate which are consistent with the definitions of Nnn

as stress resultants are

tn 1 Nn 12z(

ci h n OL h 3  (.5
n

With the help of the three-dimensional equations of motion for the nth

laminate together with the surface conditions (4.4) and equations (4.7) and
n an

(4.8), we may obtain the following expression for t 3 and t, namely
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n nn nn nt 3  1= t3 ( t -t ) * +uB£B

n

+ 6 (z2_ -2)h -t] ( (4.)

n

n tn 1 (4z3 zh 2 n n

t 3 3  z 3 h 2  n (u aha-z 8 ,-

n

+ §z 2 2 n 1)(( 3 h a 2h n u

n

6 22 )

h 3  n
n

1 2 n f

n
+ _ -- (ut3 +  t3n (4.17)

n

We note from (4.16) and (4.17) that

f ,hnt n dz =V V 42 n' (tn -zt~ n = ' (4.18)',-h n a3 a _ -hn t33 n ,B)d 3 B3,B "

in comformity with the values of VI' , I'P but (4.16) does not fit in with
a' 3' a3

the value for M" This is partly due to the nature of approximation in

the special assumption (4.15).
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S. Effective modulus theorX

We summarize here an effective modulus theory similar to the classical

theory for sandwich plates of the type described at the beginning of section 4.

The theory is dynamical and includes thermal effects. The composite plate

is regarded as a single plate with symmetry with respect to directions normal

to the plate, and its motion is governed by equations (3.1) to (3.3). The

coefficients in these equations are specified in terms of the constant coef-

ficients of the separate laminates by using the formulae (3.4).

With the help of the values (2.19) and (2.20) for each laminate, the

coefficients in (3.1) to (3.3) have the values listed below:



I - "I ...... i , (oA., - N...

Xin nnA

.8 N (n Aa n Ac a ) lXpNh

A = Z ( A n A  p Z= p

n=l A n=1

N An nA
S Z( n  -

A  X
Xv n= 1 A nA

nA  n B

=( -)= ( Ba nA

N 
N nA

N n B n  -B  N n BB(n~DHn n - -

n= 1 nA n=1 A

N N

No-( 
nl at --t = l n H n

Da : xl + Hct n, A8 = b nln c

, n=lA

nA n

F Z {n Faa a' H b n B n

n=1 A

N P 2 n B n} B

T . fn( AF + Hn AD -_

n=l A

N Nn H2 n a--B
b = £ + b = ( Dn

Cta n=1 n a ) n-1
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6. Simple static problems for a laminated plate

We consider first the simple homogeneous extension of the plate, using

the theory of section 4. Recalling (4.2) and the conditions (4.3), we sup-

pose that the components of the displacement and the director displacement

vectors and temperatures of each laminate are given by

nnn n

un = Lx+My , u = Mx+Ny , n =n0 , =0
2 n n

(6.1)
n+l n nlu3  -u3 = hn 10 + hnSr (n= 1,2,....,N-l)

n n
where L,M,N,B,u 3 ,3 are constants. Then,

en = = L ,en = =e M ,en e =Ne11  = e l , e1 2  = 1e 2  , = e 22  ( .

~(6.2)

n =0 , n 0 yn 0Pa8 =  3a =  '

With the help of (4.9) and (4.10), it can be seen that equations (4.5),

(4.7) and (4.8) are satisfied provided

t n =0n t n  0 n = 0 k * n  0 k * n = 0 (6.3)u = 0, t8=0,u 3 z ' t3 =  'u = '

for n =1,2,....,N and

,n3 0 2nA n = nA en n {9 (6.4)
3 3 aB (e6. n

By (6.4)2 , the kinematical quantities 6n are determined in terms of the
22 3

n
constant strain components ea = e a and constant temperature On = 0.

1 n
Then, u3 may be an arbitrary constant and u3 is given by (6.1) for

n=2,...,N. From (6.4), (4.9) and (4.10) we have
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n n n nA nA AB n
ci8 A ,B't8 ~ n 'e u

n~ n- B " - )e _ (nD - - )6 , p = 0 (6.5)
A nA

pnq  =. a n A  e8 n nA

W 0, n = 0 n f 0  In 0
da a 1 O

Making use of (5.1), we calculate the expressions for the forces Na8 ,

director forces MI with respect to the reference surface SR (or z = 0) inRI
section 4, and entropy densities for the whole plate, in the form

N
N,,, Z N n + ^

N
n -P~~~~n =lPnn = - Be 8-D

(6.6)
N
NI Z n~ -AP~eFN1 LZH nN 0 A ct eX'P +Fa

N
Pn1 =EHnn =" 'e -H p'

Comparison of (6.6) with the constitutive relations (3.2) and (3.3) shows

that for homogeneous extension of the composite plate the overall moduli are

the same as those used in the effective modulus theory of section S.

Next, we consider flexure of the plate with the reference surface

sR (z = 0) unstretched and the entire plate remaining unchanged in

temperature. Again recalling the continuity condition (4.2) and the

relations (4.1) we take displacement components and temperatures in the

forms
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n n n n
6 1 Px+QY , 6 2  Qx+Ry , ua =Hna

(6.7)
n Ry22  Kn

u - Px2 -Qxy- Ry 2 + =K0 n en  0
n n

where P,Q,R,K ,¢ are constants. Also 6 are constants subject to the

conditions

n+I n n+l h6nK - K h n+ 3 +2 h n =1,2,...N-) (6.8)

Then,

Pll = Pll = p  , P12 = P21 =P 12 Q ' 022 P22 = R , 3a = 0

(6.9)
n n 0e B = HnB p ,yi =0

Equations (4.7) and (4.8) are satisfies provided (6.3) and (6.4) hold, where
n. Kn  K1

(6.4)2 determine 81 . The constants K can then be found from (6.8) with K

2 .3

being chosen arbitrarily. From (6.9), (6.4), (4.9) and (4.10) we have

n A n A  n A  n B

,n =H (n A X nA X. P Pnn =-Hn Ba - nA P )P
aa n aa n A Xn n nA a (6.10)

Mn np n nF
a$ = DaPXp ' Pnni csPlct

From (6.10) and (5.1) we then obtain
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N N

N Ln- 1 f = p -F. ~ ~X~ n = 1 n te c~

(6.11)
N N

M E ( +H n  ) D p Pi = p l (TI + Hn  
T F)Spot$

n~ d n a a X18i1 n=.1 n 1 n

where N and H are computed with respect to the reference surface SR

(or z = 0) in section 4. Comparison of (6.11) with the constitutive

relations (3.2) and (3.3) for pure homogeneous bendin,; in which e =0,

4=0, e= 0 shows that the overall bending moduli are the same as those

used in the effective modulus theory of section S.

In the foregoing examples the overall moduli for simple extension and

flexure of the composite plate are the same as those found from the effective

modulus theory, but this is not generally true for more complex problems.

For example, if the plate is subjected to a constant temperature difference

between its major surfaces, then the overall moduli differ from those for

the effective modulus theory. Moreover, for more complicated problems it

is difficult to complete the analysis based on the theory of section 4

without specifying a particular value for the number N of laminates. On

the other hand, it is no more difficult to use the effective modulus theory

of section 5 for N laminates than for 1 or 2 laminates. For many purposes

this theory may be adequate but sometimes a more detailed theory, such as

that in section 4, is required. For example, studies of simple harmonic

wave propagation by the effective modulus theory fail to indicate any

dispersion effects.

The theory of section 4 can be used as a basis for a numerical discussion

of thermo-mechanical response in a composite once N and the composition of

the laminates are given. In the next two sections, we limit our attention

to further analysis for one particular composite consisting of 3 laminates

of orthotropic material whose directions of orthotropy coincide with the

x,y axes, the two outer laminates having the same thermo-elastic oduli.
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7. Composite with three laminates

In the theory discussed in section 4, we now restrict the axes of ortho-

trory of each laminate to coincide with the x,y axes so that non-zero constitu-

tive coefficients for each laminate are given by (2.15), with an added

prefix n, and by (2.13) and (2.14). The composite consists of three

laminates in which the outer ones have the same mass density, thickness

and elastic moduli. We choose the reference plane SR (or z= 0) to be mid-

way between the faces of the composite plate. Then,

h = h , H2 =0 , H3 =-H 1 = -(hl+h2)

(7.1)* * 3An8 I.1c e c

A a$ A a etc.P3 = Pi AP Xl =

Evidently, for 3-layer composite, the equation of motion (4.7)-(4.8) and

the constitutive equations (4.9)-(4.10) separate into two groups: One

group represents.the extensional motion (or the stretching) and the other

characterizes the flexural motion (or the bending). In order to record the

relevant equations in an economical manner, we introduce the quantities

ui, u1 , etc., defined as follows:
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+ 1 +3 1 3 + 1 3 1 3.=u. +u. , u. = u.-u. , 6. =6.+6. , 6. = 6.-
i i i i 1 1 1 1 i i i

e., !2 (u O .u) , e 12 (U L'+ ~ua )

+ . - -
p3 =63, , a = 6 YU L

+ 1 +N 3  N -- N1  3
NaB = , c, , 'a6 = Nc a %6

(7.2)

v +  -- v 1  + v 3 , v: I .- v 3 ,
+ 1 3 1 3

% .M d8 + M
* ,B M d$ d

M + M1 +M3 M 3 M 1  -M3

a*3 d*3 L3 a3 =d3 a*3
+ 1 3 1 3

rl =nr +rn , I = I -rn T' l = rl1+ Il P TI =I TlIl 1

+ 1 3 1 3 1+ 1 13 1- 11 13

Pa* = Pa +P, Pa P a = PaP Pot= P( a a Pa* Pa* "Pa
I 3 E 1 3

NI4 =M .I , M = M - M

3 E 1 31 4

Then, with reference to the 3-layer composite, the first group of equations

appropriate for extensional motions are given by
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2 2 1 ..2

8,c ut u P2U$

2 2 * 2 .2
M3,a'v3+ h2(ut3+ut3) = ,(7.3)

-p2 - k 2 + k 1  2n",a u U

N2  2 A11 e2 + 2A11 e2  2 2 2 Be11l 1= 1, lll 22e22 + 1 A13+ 112 ,

2 2.11 2 2222 2 A 2 2B22
N22  A2 2e 11 + A22e2 2  A2 2 3 +

N 2 =N 2 =2 2A12
2

12 21 12e12

2 2 2 2 2 2A  2 2B e (7.4)

3 11 11 22e22 6 3  2

2 2 2 2 m 2 2
Mi3 = E1 I 31  , 23  E22 32

2 2 2B 6 2 2 2 2 2D 62

23 11 11 22 22
P2n _ -2 a- 2 2- ,

p1  _ 2,1 2 22 2,2

and by

+ 1 2 3 1 .'+

VN+ 4ht-+t+ t3 p

+a 3 1 t2 t3 1 1'3

1 2 3 1 -?.f - Vi +%h(t8 - - - -t)= O=6

, a- + 1-2 h I t u u z(7.5)

+ t t2 + 1 1t3  "ot , ct u 3 u 3 Z 3-u 3 Pi ° 3

1- 
2  3  1n

Po, + u -35 Ik u k k z=
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N l = A11el+ + A e 2 3 + B 1  '
1 21 1112+2 113 1

N+ 111+ 122 + 1 A26+ +18 e+
22 = A 22e11  A22 e2 2  22 3  22

N+ 2112 +
12 A 12e 12

+ + 1 + 1 + i +
V3 A 11Aell + A22e22 + 63 +

+ 1 + + E2P +
1= M2. = 2 2

11 1- 1 22-
MI:DIIpII+ D2 2P2 2 + F 1

M - 1 - 122 - 2 F22-
22 = D22plI + 1 2 2P2 2  F , (7.6)

_ _ 1M D12=M = )
12 21 = 2

v 1 Y- , =1DY1 11 1  v 22 2

+ I + + + I +
- B 11 e 11 - B22 e 2 2 - B = 3 D e

Pl F 1 F P -
1n 1 F11p11- 22 2 2 -F

where
+ 2 + +

u 2 hl8 -h 28 h (7.7)

1- C 1 - 1- 23 3 1

The second group of equations appropriate for flexural motions of the

3-layer composite plate is
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M2  2  2 1 "2cm±,c" v8 4. h2 (utO +t) - p2Ca

V2 + t2 t1 .2 (7.8)a,ct u 3 u 3 2 3

12 2 (uk*2 2*1 2
Pctt 2E1 2 hu P2 1

2 2 11 2 2 11 2 2F
1 1111 lip11 11MII =D 2IPl + D2 2p22 +

22 2 2 2 22 2 2 22M22 = D22P v + D22P22  2

2 12 2 2 2 2 2 2 212 21 DI2 (PI2 +P2 1) , V1 = DI , V2 = (7.9)

2 2 2 _2 2 _2

p2Il - F11P11 - F22P22 - 2

12 2 b 12 2b2 , 2 2bPl 11 2,1 P2 22 2, P2 1 -  2

and by

N a ,a u t + u  t "u t + t = Pi t

ctc u8 +8 hu8I 2.8t3_tI
+ 1 2 3 1 "'

M ,-V3+ hl(ut3-u -u 3-£ 1 ) = I18

Va + + t2+ t3 I '0 , -V + hl(uta u 8+  -£t):Pe
8 1 u 8 u a u a . ~~~

(7.10)
V+  + tI  t2+ t3+ I 1 .±,c u 3  u 3  u 3 zt3 1l3

-P , - k * 1 uk *2  +  k*13 k  1 pl

PI+ + uk U -k* k )=pln2
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- 1A11 - 1A11 - I - lBll -
N =A + A2 2e2 2 + i3+B

- .11 e 1A22 - 1 A22- 1 B2-

2 2 2 11 2222 223 22

N12 1 A122e- , Ae + + A'6- + B o-1212 3 1111 2222 3

M 1  E , M23 E ,

+ D11 1D 11 + 1 +
S= 11 p11 + 22p22  F11

4

+ I 11 1+22 + 1 F2+
22 = 22 11 + 22 22 +

M2 1 M 1 2D1 2(P2+P2) , (7.11)
12 2 1 2 1 22

VI = , V2 = ,D22Y2

PT - 1 B - 1 e - 1 B -1D6
pn - B 1~ - B - _I -_Ie

1 ll iB22e22 3
+ 1 + + 1 +

Pi I = Flip11 F 22P 22 - F c

p, = - alle-, J P2 -a 22 a ,2"

i+ ibl+ + 1i
P1  a 1- , ' P2 22 ,2

+ Ib  +
p 1i 1 = b

where

u -h 2  + 22 h 6 , 6e -h4 h4 + 7.2
OL h2 a a 1 6 a IU 3  2u 3 21 3 2 2 1 (.2

In the remainder of this section we consider an example in the context

of thermostatics, namely the torsion of a three layer laminated rectangular

plate. Let the plate be bounded by the planes x =± a, y =± Z,

z = ±(h +h 2) and let the plate be subjected to the action of couples

about the y axis over the ends y = ±1 X. For this problem, 01,2,3,
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e 1,22, 3 are all zero and we choose the following forms for the components

of displacements and director displacements which are compatible with (7.7)

and (7.12):

1 3 2 1 2 3 y
u I -Hl Ty , u =-H Ty , u - 0 , cS 1 =5 1  5i=Ty

ul T [h A(x) + h B(x)) U3  12T[ x 2 02 2 1 ' 2 =- h 2Ax h1B~ u2  0
(7.13)

51 3 rx) 2
2 = 2 3 'B(X) = TA(x)

1 2 3 1 2 3
u =U = u5 = = =03 3 U3  3 3x

where T is the twist per unit length and A,B are functions of x only. It

follows that u ,u3 ,6 5, are all zero and relevant equations are (7.8) to

Ct' 3

(7.12) for flexural motions. The components of displacements and measures

of deformations are

u = 2H1TY , U2 =- th2A(x) +hlB(X)] , u =- 2"xy

6 + 2Ty S+ 5~2B(x) , 53 0

(7.14)

2 2 TdA 1 2
012-021 = "(d+l) , = T(A-x) , 2= 2"t(B-x)

- T [hdB + 1) dA + + dBe12 - fh"r l ) 1' 2(W-+ 1) , 12 + 2 1 = 2"(-+1)

the remaining components of strain being zero. It follows from (7.4),

(7.6), (7.9) and (7.11) that the components of various forces and director

forces are given by

34.



1 2 2 D 1 2 T( 1) , V 2  2DTANfI2  '21 d 212 dA+ 2 D2 2 T(A-x)

- = 1.12 dB dA
N12  N2 1  A1 2 T[h 1 ( - 1) h2 ( 1

M2 = M2 = 2 1 D12 T-+ 1) , + = 2 1 (B-x)
12 =21 12-r (x +1 'V2 22T

3 1
the remaining components being zero. Given that the forces u ti £ti on the

faces of the plate are zero, the equations of equilibrium (7.3), (7.5),

(7.8) and (7.10) are satisfied provided

M2 dN

d Nl2 0 1 1 1 2
dx 22 h2 (ut 2 +

ut 2 ) = 0, dx-- u + u t 2 = 0

+1 2 0 1= t2 (7.16)

dx V2 + 2 hI( u t 2 +ut 2) = U 2 (7.16)

tI  t2 = t t2  0

t 1 2

Substituting (7.15) into (7.16) and eliminating u 2 + u t 2  we obtain

the following differential equations for A and B:

b- d2 A + 2B - d(A-x) = 0
dx 2  dx 2

(7.17)
d'B dA

c - + - e(B-x) = 0
dx dx

where the coefficients b,c,d,e are given by
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2_12 + 2 1A12 112+ h 2 1A12
b 1 2+ h2  A1 2  1 12

h 1 h A 1 2  44h h 1A 1S h1 h 2 I12 '1 2 12
(7.18)

2 D2 2  4 ID22
d 1 12 Pe 112
12 12 h1h2 A12

We need to supplement the differential equations (7.17) with suitable boundary

conditions. To this end, we first note that in the torsion problem under

discussion there are no applied forces at the edges x=±a. Then, in view of

(4.13) for the special case N= 3 and recalling the nonvanishing expressions

in (7.15), the appropriate edge conditions are

M - hlN 0 , MI2- 2 h2N 0 on x = a (7.19)
12 1 12 12 2 12_

The above conditions are satisfied if

dA dBdx + I = 0 , + = 0 on x =±a (7.20)

From (7.17) and (7.20), it follows that

A = x + L sinh nx+M sinh mx
2 2 (7.21)bn2_d bm-.d

B = x 2 L sinh nx-- M sinh mx
2 2

n m

where

Ld(m 2-n 2)cosh na+ 2n[(b+l)m 2d] = 0 ,

(7.22)

Md(m 2-n 2)cosh ma- 2m[(b+l)n 2 -d ] = 0 ,

and n,m are the positive roots of the equation

(bc-l)X 4 - (dc+be)X2 +de = 0 (7.23)

The couple at the edge of the plate, measured per unit length, is
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given by

(xe 1 +ye 2 ) xN 2 +e 3 x M2

+ (xe 1 +ye 2 +H1 e 3 ) xN +e 3
x M1

+ (xe 1 + ye 2 + H3 e3 ) x N3 + e3 x M3 (7.24)

Over any edge y= constant, with the help of (7.15), (7.24) becomes

2 + e2 2 + HN- 2 + V)] (7.25)
ely(V2 + V2) -2 [M2 1 + 1 2+ 1 2 +

This yields a resultant couple TG over v= constant about the y-axis given by

NG = + + - x(V2 +V2)}dx (7.26)
21 21 1 21 2 2

It can be seen from (7.16) that

2 + d 2 + + (7.27)
2  2= dx (M1 2  H1 N2 1)

so that with the help of this result and the edge conditions (7.19), (7.26)

becomes

TG = 2 fma 2l + HN 21dx (7.28)f-a 21 M21 12

With the help of (7.15), (7.18), (7.21) and (7.22), it follows from (7.28)

that the torsional rigidity of the laminated plate is

G = 4h h IA d- (b+1)m 2}(1-bc)n
2 + d(c+l)}tanh na

1 2 12[(b2c+2)an+ 2 2

fd- (b+l)n 2}(l-bc)m2 +d(c+l))tanh ma] (7.29)

md(m 2-n 2 )

It can be shown that when hI )0 (7.29) reduces to the known value
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3 2 12 2 23ah2  c 2  -tanh ma) m

G 2 1 (1 _ ma M =IT22 -2) as hI  0 (7.30)

ma 12 2 2
for a plate of thickness h and moduli 2 c12 2 c23 computed from Cosserat

2 1 2 , 2 3 cmue rmCsea

plate theory. Similarly, when h 2 -O, (7.29) reduces to the expected value

16ah 3 1c 12  1 23

1 12 tanh ma.I 2 3 (7.31)
3 (- ma ' 1T-121 C1 2

1 12 1 23
for a plate of thickness 2h1 and moduli c12, c2 3.

When the width 2a of the plate is large compared with both thicknesses

h1 ,h2 of the laminates, then na and ma will be large and the torsional

rigidity (7.29) reduces approximately to

G=4hh ~ 1.12 (.2

G = 4hh 2a(b+c+2) A1 2  (7.32)

Also, with the help of (7.18) and (5.1), the result (7.32) becomes

! G sa-12 (.3
1=a D12  (7.33)

This is the same value which would be obtained by using the effective modulus

theory of section S. However, if 2a is not large compared with both h 1 or

h. the effective modulus theory is not sufficient for the discussion of

torsion. This is in contrast to the situation for pure tension and flexure

of the plate, where the effective modulus theory gives satisfactory values

for overall moduli.
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8. Harmonic waves in 3-layered plate

We consider here wave propagation in a 3-layered composite plate of

the type discussed in section 7 utilizing the two groups of equations (7.3)

to (7.7) and (7.8) to (7.12). We limit our attention to the propagation

of harmonic waves, under isothermal conditions, along the x-direction of a

composite plate whose major faces are free of forces and couples. We

assume that all variables contain a factor exp i(Ex-wt). where E,w are

constants, so that this factor can be removed throughout the calculations

that follow. The group of equations (7.3) to (7.7) then separate into two

further groups, the first being concerned with symmetric SH waves and the

second with symmetric plane strain waves. For SH waves we have non-zero

values for u,5 2 PU 2 and

2 2 i 1(2  + 1-- 12 +

N 2  A 1 )U2  , N 2 = iE('A 2)U +

2 2 t1 2  2  2

iCNI2u2 _ 1 " u0 u2  (8.1)

2 u 2-u 2 pl 2
+ 1 2

1i2 h 1 ut 2  t1)

A non-zero solution of equations (8.1) leads to the dispersion relation

a 4 4 +(b-c2 )E2 -d w2 +e 4 = 0 , (8.2)

where
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2 1 12 2 12 1 12
S= h1 ( c12 ) h2  c1 2 +2 h I c12)

42 123 2 12 112b = ( i c23)(h 2  c12 2h c12)

c=P*h2h 22 * 3 * 2 1 121 1 2 12 (P1h 1p 2h2h1 ) c12  (8.3)

d = E I c2 3) (P2h2 + 2p1h)

e = 1 2h(2p h +* h

and where use has been made of the expressions of the form (2.19)-(2.20).

The dispersion relation (8.2) yields two expressions for 2 as a function

2of W , corresponding to two different modes of propagation of SH waves. In

one of these

2 d 2 2 h2 +20 1h1  2
h 212 12h I 12 4) (8.4)

2 h2  c12  1  c12

as w +0. This agrees with the values obtained for SH waves from the

effective modulus theory of section 5. [Recall that there is no dispersion

relation in the effective modulus theory.] In the case of isotropic layers

the limiting value (8.4) as 4j+O agrees with the full three-dimensional

theory by Lee and Chang (1979).

Symmetric plane strain wave propagation on the basis of the theory
2 + - 2 - +

characterized by (7.3) to (7.7) yields equations for u,,ul,u3063)6136 3 ' A

non-zero solution of these equations gives a quartic dispersion equation for

2 22 in terms of w. We omit the details but note that one root of this quartic

is such that

2 p 2h2 + 2plh1
2 2 11 2 1 11 2

2 1 33 12 1  11 l32 1 c33) 1 11 - ( c33c3 3  33

as w -0. This agrees with the value predicted for symmetric plane strain
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1

waves from the effective modulus theory of section 5 which has no dispersion

relation. In the case of isotropic plates the limiting value (8.5) as w- 0

agrees with that found from the three-dimensional theory by Lee and Chang

(1979)..

In a similar way, the group of equations (7.8) to (7.12) separate into

two further groups, one for antisymmetric SH waves and the other for anti-

symmetric plane strain waves. In the first group we have nonzero values for

2+-2 2 + - +2, 2 ,u2 and in the second group 6,u 3 ', 6 1 3,u1,u3 are nonzero. For anti-

symmetric SH waves we finda quadratic dispersion relation for E2 in terms of

2W. There is no wave of this type to be found from the effective modulus

theory of section 5. Also, in the case of antisymmetric plane strain waves

2 itemof 2there is a quartic dispersion equation for 2in terms of 2. One root of

this quartic is such that

P 2 h2 + 2pIh I

2 2 2 1 12 (8.6)
3211 c33) 2T3 2 2 1 11 (c 33 )T2£ (Cll 3- "3 + (3 hl + hl1h 2 1 2 hl 11 1 l 33 ") }

233 c33

as w-0. This agrees with the value predicted for antisymmetric plane strain

waves from the effective modulus theory of section 5 which has no dispersion

relation. In the case of isotropic plates the limiting value (8.6) as W- 0

agrees with that found from the three-dimensional theory by Lee and Chang

C1979).
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9. Large number of laminates

The theory of section 4 and section 7 may also be used to discuss

periodic stress distribution in a stratified medium consisting of a large

number of alternating, parallel layers of two homogeneous orthotropic

materials whose directions oforthotropy coincide. We consider only the

case in which deformation and temperature fields are identical in every

other layer so that

h n+2 + h2 nn ' n+2 = -n ' 0n+2 = On ' n2 n(9.1)

In view of the continuity conditions (4.3), it follows that

n+ =n Phn+l~n~l -nn
(9.2)

an+l = 6n ' hn+l n+l = -hn~n

We may now select three typical laminates, say 1,2,3, and use the theory of

section 7 in which

u o , , a- =S , 01 1

2u 2 , + 2h62 6+ 26 h2h2u . 2u. hl6 =- 2h6 0 282 ,hl =- 2h2,2
i 1 1 i 2

(9.3)

U~ ut 1  X t 3 z

*3 *1 *3 * 2
k = z k k k

The two groups of equations (7.3) to (7.7) and (7.8) to (7.12) simplify

considerably. We restrict attention here only to the group (7.3) to (7.7)

which determine extensional deformations parallel to the laminates. Under

isothermal conditions, (7.3) and (7.S) reduce to
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2 2 1  p2Na,a+u utB +t =

2 2 2 1 2V3 + z h 2 (u t
3 

+ u t 3 ) P2C2 6 3

(9.4)
+ 1 2
N .,+2(t -ut) =t2al ,

+ -V+ +h ( 2 2 "2
%3, + It +ut 3 ) =-2plc1 h 2/hl) 3

and this leads to

2 N+2
(2N + c+8),c ) 2(p1 +p 2 )ua

(9.5)

(2h M2 - h 2 M 3  2h1 -- h2V) = 2[hlP2 a 2 +h p l a l /h

Also, from (7.4) and (7.6) we obtain

2 + + 211 111 2 11 111 2 +2AI 1 h2 A 22N11 +N11 = 2( All + All)e 1 1+2( A22 + A22)e22 +2 A h 1

2N2 + = 2( 2 A 111) 2 2 22 1 A 22 2 2Ah21A) 6 2
22 22 22 A2 2)e+2( A22.+ A22)e22 +2 223

2 + 2 + 2.12 1 12 2
2N 2+N += 2N 2 +N+ (2A1 2)

12 12 21 21 = 4( AI2 + A1 2 )e 1 2

2hM 2-h2M3 2(h 2 21 2 (9.6)

21 23-h2 23 1 2(l222+h1 E22)P32'
1 3 2 3 ( 1 E11 2j E1 1) 11

h 22 21 22+212

2h+ hV 2(h 2Al- h Al)e +2hl )
2 +21 2 +{ I 2+ A

1 22 2 A2 2 )e 2 2  1  h 31

It is now a simple matter to discuss harmonic wave propagation in the

2
x-direction. There is a symmetrical SH wave for which u2 is non-zero and
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2 P + P2 Plh 1 + P2 h2E (9.7)
2 2 A.12 1 12 2 12 1 12A1 2 + A12  h2  c1 2 +h 1  c 1 2

When the layers are isotropic, this reduces to the result given by Sun,

Achenbach and Herrmann (1968). In addition, equations (9.4) to (9.6) yield

2  2  h2

2 h2 2 _2l.1 2 2 21(2E11 + 2 EII) 2- (P2 L2 + 2 " . A+-- A]

1 1 1
2 11 1~I 11
x[( All+ All (l +02(2 - 2Al _ IIAI22 = 0,

or

[-L (h 2 c13 +h 1 13,h2 2 1 * * )h2 2
12 2 13 1 c 1 3 )h 2  U- - (P2 h2 + l h l

S 233 133 211 1 11 2 * 2
+h (h1 c3 3 +h 2  c33)] x [(h2  c11 +h1 c1 ) - (p2lh 2+p1h)W

2c11 c33) 2 = 0 (9.8)

For the stratified medium considered here, we use the value .= 1/12 in the

expressions for 2Ei, iE 11 in (2.19). Again, when the layers are

isotropic, (9.8) reduces to the result given by Sun, Achenbach and

Herrmann (1968).
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Part B. Laminated Layered Composite Rods

10. Basic equations of the linear theory of orthotropic elastic rods.

Consider a straight rod of constant density p and.at constant

temperature T, bounded by the surface

F(x,y) = 0 (10.1)

where xi = (x,y,z) are rectangular Cartesian coordinates. The rod has

orthotropic symmetry with respect to the x.-axes and has geometric symmetry
11

with respect to the x and y-axes. The basic equations of the linear theory

for thermoelastic deformation of such a rod have been given in a number of

previous papers. In particular, we refer to the recent paper by Green and

Naghdi (1979b), which contains explicit values for the constitutive

coefficients. The main equations and constitutive coefficients for iso-

thermal deformation of an elastic orthotropic rod are summarized below in

Cartesian tensor notation with Greek indices taking the values 1,2 and Latin

indicates the values 1,2,3.

We recall that a Cosserat curve A comprises of a material curve.

and a set of two directors assigned to every point of the material curve;

the two directors are regarded as modelling the shape and the deformation of

the cross-section of the rod. In the reference configuration of a straight

rod, let the material curve be a straight line X R which we identify with the

line of centroid x= y= 0 of the rod. Let u and 6 denote, respectively, the

infinitesimal displacement vector and the infinitesimal director displacement

of XR (or the line x=y= 0). Then, referred to the unit vectors ei along the

xi coordinate axes, u and may be expressed as

The overbars on 6 and 6 i in Green and Naghdi (1979b) are omitted here for
convenience. cu
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7
U ii (10.2)

and the relevant strain measures are

YC =' 'aoe 68a ' Ya3 , 6 3 + u /az , y33 = 23u./z ,

(10.3)

K =  /;z , K3 =  6 ,a3 /z

The contact force vector n, the contact director forces p 0 the intrinsic

director forces nr and the external fields f,Z, , referred to the basis e.,

can be expressed as

n iei~  Pa Piei ' iei
(10.4)

f = f.e. , 9, = 9, .e.~ I-i -a a-II

The basic equations of the linear theory under discussion separate into

four groups, two for flexure, one for extension and one for torsion. These

are summarized below.

Plexure Fl

7T23 = n2 = k5y2 3  ' m 1  P23 
= k1523 (10.5)

2f J~ 2IU 2 2
n 2 /az +Pf= p2u2 /;t am 1/3z -n2 

+ pk23 
= Pa2aa 2 3/at

Flexure F2

13 : n1 = k6y1 3  ' m2 =-p 1 3 =
- k16 13  -

(10.6)

an1/aZ Pf = p2 uI/3t 2  am2 / z + n I - pi13 =- 2P 2a 2 13/at
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Extension E

Tr 2k Y1 +k k k ~2 + 2ky 2 +k11l 1 11~l 7Y22 + e833 • 'r22 = 7Y11 [2Y22 9Y33,

n 3 = k8yll + k9Y22 + 2k 3 y3 3

pl = k10 11 + k 1 7K2 2  ' P2 2 =- k17ll + k1 1K2 2  , (10.7)

an 3/az + Pf 3 = Pa 2 u3 /at2 '

2 2 2

pll/az +P1- '11 = Pa a 2 11/at
2  , 'P22/z +' 2 2 - 

2 2 = P"29222/at

Torsion T

It12 = r
21  k 4(Y12+y21) P12 P21 = '3

P 12 = k12K 12 + k14K 21  , P2 1 =k 13K 21 + z k14 K12  ' (10.8)

2 2 2 2
I - aPI2/~~-~~ IP1 2 +

0£ 12 = "I212/2 ' P2 1 /Z-2 + 2 1 = p 2a2621/t2

We also record here the value of the constitutive coefficients for a

rod of rectangular cross-section bounded by the planes x 32' a, y -2 h.

In terms of the elastic constants s13 (or c13) for an orthotropic material
rs rs

in the three-dimensional theory, the relevant constitutive coefficients are

p ah* , pa1 
= h 12 , 2  /12 (10.9)

11 22 33

T, = 4ah c1 1  T2 -- ah c22  , 3 -4 ah c33
i ka11 11 22

k 7  ah c22 k 8  ah c 3 3  , I., ah c33  (10.10)

1 3 13k 1  ha 3 k ah3 c23  k 01 2 ac 13  ' 11 12 23 ' 17

These coefficients are special cases of those given by Green and Naghdi (1979b)
but revised values are given here for k12 ,k1 4 and k4. We also note that in the
paper of Green, Naghdi and Wenner (1974, p. 501), Eq. (8.55) should read

k12 -4 1 4 i1rR /4[l +(R')2]. In addition, we now set k 14 -0.
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12k14 0 k 12 k 13 - k4  yahc1 2/8 (10.11)

and

3 33 =h3/1 33

k 1 S ah'/(12 s33 16 a s33) (10.12) 1

Previously y was taken to be 8. For vibration problems we set y= 5.135,

the first zero of the Bessel function J2 (a). The coefficient . is the

13 23,classical torsional rigidity. For a rod in which a/h > (c13/c2 3) this

is given approximately by

13 23
1. 3 c13{ c 3  c23 7_-3 3 192h tanh3 x2 (_) ]} (10.13)

ra 23 C1 3

The coefficients k5,k6 are given by expressions of the form (10.26) in Green

and Naghdi (1979b). For a rectangular section these are calculated to be

ha3  1 2 13 2 22 1 (-_)n

12k' a sl + h s Z- - ) -2k " 6S13 +  S33 2 + n 2n2 nra 13 23.)1 }
n=l i2n cosh[---- s13/s23

22 4ha 22 13
2 13s33 33 (13). (-1) n

4 a s13( 23+2) 2 ( 23" -2 )s2 . (2n.l)rh 23137

s2 IT 23 n=o (2n+l) sinh[ 2  (s3'3 /S
s23 23 L~ _ 2asi ) 23 13_]

(10.14)

ah = h2  23 2 i (-1) n

12k 23 33 12 2 2 nrh 23 13.!1
5 n= II n acosh [- (s23/s13 )

11 11 23ii 4ha si s2n

-= h2  23 s 3 3  23+s 2 (-i)n
s23 --13+2) 2 (-HP 2 (2n+1) a 13 23)J

S13 s13  n=o (2n+l) sinh[ 2h s13/s23

Let the external force vectors applied to the plane surfaces x= a, x=-"2a

and y= h, y=--h of the rod be denoted, respectively, by +t, t and by

u t , Z! and write

The expression for the coefficients kS and k6 are recorded in two different
forms for convenience of computation depending on the magnitude of the
quantity (a/h) (s13/s23).

13 23
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1

t.e. , t= t.e.

(.10. 15)
ut U t~e I e t

u - u - 1 QA £ i

Then, in the absence of the effect of body forces in the rod, we have

pf = ( tdx + (+I+ _t)dy%a %h
32 ia h

Pt = X(ut+Zt)dx+ z a( t- t)dy (10.16)

- a - h td

kah

pt2 ,2 h u h(t- zt)dx + y(+t)dy.
! - a f h
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11. Composite rods

We suppose that a rod of rectangular cross-section contains N rod-like

laminated layers, each consisting of a rod of rectangular cross-section and of

homogeneous orthotropic elastic material at the same constant temperature.

A typical cylindrical layer, the nth, has constant density On and is bounded

by the plane x= ± a,1 y=H ± -h, z= ± 39 , where a,H n,hn are constants.

Each cylindrical layer is fixed to its neighbors at its major surfaces

y=Hn ± 1hn so that

H n+ l -H n = 1(hn+ +h n ) , n=l,2,...,N-I (11.1)

The mechanical behavior of each cylindrical layer is assumed to be

governed by differential equations for rods in (10.5) to (10.8) but with an

additional index n attached to each symbol. Thus, for the nth layer, we

n n -I n n *n n n . n nwriten,23 .... , .... kl6,P , 'Ia2'' " 'u 'u ti, etc. Since displace-

ments and force vectors are continuous at each interface it follows that

n+l n n+l h n+l n n
1 -1 ' h n+l~2 I-, n 2

(11.2)
tn tn+l 0 (t n +t n~ =0 (n=l1,2,..,N-l)

Forces applied respectively tu the outer surfaces y = H1 - h1 and y = Hn + I hn

of the composite are

1 tN
'~ u U! (11.3)

while forces applied at the surfaces x=7 a and x= - a are, respectively,

given by

tn and tn Hn-4 hn < y <H +4 hn  (n=l,2, ,N) (11.4)-- n n n

The relevant equations of motion and constitutive equations for each

cylindrical layer are of the forms Fl,F2,E and T in (10.5) to (10.9) with

an index n added to each variable.

50.
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12. Simnple static soluti jns for composite rods

We consider first simple homogeneous extension of the rod along its axis

with zero applied forces on its major surfaces x= +- a, y=H 1 - h

y=HN+ 1 hN so that

t n = 0 , t n = 0 (n= 1,2,...,N)

(12.1)
1 tNt =0 1 t =0

Recalling (10.2) and the conditions (11.2) we choose the components of the

displacement and director displacement vectors in the forms

n n n n

3  11 = M 22 =

-(12.2)

nul n h K+l h Kn  (n = 1,2,...,N-l)
u2  -u2  n+l n

n

where L,l,Kn u2 are constants. The remaining components of displacements and

director displacements are zero. It follows from equations (10.7) for the

n n n
extensional case that n3,1TII 2 2 are constants and we choose the constants

Kn such that n = 0 for n = 1,2,... ,N. The equations of motion in the form

recorded in (10.7) are then satisfied if

nfn = 0 1 n 0 n n 0 (12.3)3 P 22 ' 11 11 (23

where

nfn a n + t)dx
J f a u 3  Z :

P n = J_2a|tnl+ + t n ) x dx , (12.4)

n n= h ft2 (tn - n)dx2. n -jiau2Z2

In view of (11.2)3 , (12.1)3,4 ' (12.3)1,2 and (12.4)1,,, we have
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-2 a u n dx 0 - a n x 0 for n=1,2,...,N (12.5)

au 3 J-4a u 2

Since n ; 0, it follows thatSner22

2k K kn M n L (12.6)
2 7 9

and hence

kn kn

T--2 ]M + [2k 8 - k;k9]L

2  k 2  (12.7)

n2

With the help of (11.2)3 and (12.1)3,4, it follows from (12.4)2 and (12.3)3

that

N N
n n = 0 or E Tr n = 0 (12.8)

ni 1 n=l 1

This equation determines M in terms of L. Hence, from (12.7) we obtain

n3  N n

L En--3  n n

n 2 8 2k -.N (k)2 n=l k2
E [4k--n (12.9)

n=l k2  N (k 7 )Z {4k 1 - -)
I -n

n=1 k 2

Since n3 is the resultant force along the rod and L is the extension, this

gives the effective modulus for extension in terms of the moduli of the

individual layers of the composite.

Next, we consider flexure of a composite rod about the x-direction by

couples over the ends of the rod. The solution of this problem requires

equations of the form F1 in (10.5), but because of the conditions (11.2)

at the interfaces between the layers of the composite, the extensional
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equations E must also be used. We again assume that the applied forces on

the major surfaces of the composite rod are zero so that the conditions

(12.1) hold for the present problem. In addition, making use of (10.2) and

(11.2), we assume the following values for the nonzero components of dis-

placement and director displacement vectors:

u n Pz 2  
5 sn =2n = Mu2 =-3 1Pz -P-

1 n+l n

u = Lz , u3  -u3 = (H -H )(Pz-P) (n=l,2,...,N-l) , (12.10)
3 3 n+1 n

n Kn  ,sn+ -s = h Kn+1+ h Kn  (n=1,2,...,N-1)622 S n+1 n

where P,P,S ,L,M,Kn are constants. It follows from equations of 'he form

(10.5) for flexural case Fl that

m= k P n =0 , Z = 0 f= 0 (12.11)
1 15 2 23 ' 2

Also, as in the extension problem just discussed, we choose the constants

Kn such that = 0 for n= 1,2,...,N. Then
22

kn )2 k nk n
n= 7  n 9Tr1 I2 14k + [ 2 k 8  ][L+P( -HI)]

1- n Hn 12 2 (12.12)

kn kn (kn)2
nl n n 7~ r9n k9) \

n3  12 8 -.n ]M + [41 ;- L+P( l
k2 2 2

and equations (12.3) must again be satisfied. It follows that (12.8)2

still holds; and, in addition, we require that there is no resultant force

on the end sections of the rod so that

N N
Z r -- 0 , 

n -- 0 (12.13)

n=l n=l

These equations express L and M in terms of P. As before, the conditions

(12.3)1,2 yield the equations (12.5) since zero tractions are specified
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on the surfaces x=±2 a, yaH1 -  hi , Y=HN+ hN. Moreover, because of

(12.5) the conditions (12.11)3,4 are satisfied.

The resultant couple on any section of the composite rod about the

x-axis is

N
m1 = E mI-+Hnn) DP , (12.14)

n=l

where P is the curvature of the line x =y =0 introduced in (12.10) and D is

the flexural rigidity of the composite rod. The latter may be expressed in

terms of the flexural rigidities of each constituent layer of the composite rod

and also other elastic coefficients. We illustrate these results by considering

a 3-layer composite rod in which the outer layers I and 3 of the rod are

identical and flexure is about the middle line of the layer 2. Then,

h 3 = hI  H H2 = 0 , =-H 1 = (h1 +h2)

(12.1S)
* 3 1 I -3 -1
* *1 k 1 k , etc.

and with the help of (12.12)2 the moment-curvature relation (12.14)

simplifies to

m1  2 13 1

1 n1 2k 2 +2 1k (kl)2

=2k 15 +k1 5 + .2(4k - 9 )}P (12.16)
k2

Flexure about the y-axis is simpler than that about the x-axis. When

flexure is about the y-axis, the only nonzero components of displacement and

director displacements are

n Q 2  n -

u 1 -2 +--z 2 13 Qz-Q ,(12.17)

so that from appropriate equations of the forms (10.6) we obtain
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M n n n= 0 , f,= Z n -- 0 (12.18)m2 =-k6Q 1 n1 =i 13=

In view of the surface conditions on the composite rod and the continuity

conditions (11.2), the last two equations in (12.18) lead to

a n  dx = 0 x n 0 (12.19)
-a 

u 1 a u 3

The resultant couple about the y-axis is

N N
m = Z m n=-QZk n (12.20)n=1 n=l 16

Finally we deal with the torsion of the rod which is free from applied

tractions over its major surfaces. In this case, we have nonzero components

of displacement and director displacements of the form

62n = n  =z , n = N , u1n = Fz- (Hn - H )$z  ,(12.21)
12 u21 ~ 13 ' 1= F (n 1

where B,N,F are constants. These satisfy the continuity conditions (11.2)

and, from equations of the form recorded in (10.6) and (10.8), we have

n =0 n k n[N F -H()H ]m2  6  n 1

P nf = 0 n n 1pnn 3  0

(12.22)

Tn rn 0 n n nTl T21 0 , m (2k 2k148: n

12 21 i 3 - N 1 2 1 1 4 J

Zn Z n = 0
12 21

where
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P -ff t n+ ( t ndx , I 2  af xLut' t')dx

(12.23)

n = h n (nt_£tn)dx , = ax(ut3 + tn)dx
£21 n -a(ut I 1 £13 f-k U 3 t 1

In view of the conditions (11.2)3, (12.1)3,4 , (12.22)3,7,8, from

(12.23)1,2,3 we have

t n dx = 0 , xdx = 0 (12.24)

U-a u 1 - a U 2

Also by (12.1)3,4 and (11.2)3 we conclude from (12.23)4 and (12.22) that

N N
n n = 0 or Z nn =0 (12.25)

n=l1 n=1I

so that there is no resultant force over any section of the composite rod.

The resultant couple acting on the composite rod about the z-axis is then

given by

N
m3 Hnn) (12.26)

and the constant N +F is determined in terms of 8 by (12.25)2.

When the composite rod consists of 3 layers in which the outer layers

1 and 3 of the rod are identical and flexure is about the line of symmetry

of the middle layer, then the conditions (12.15) apply and the constant F

2
is chosen so that u1 = 0. Using also (12.25)2P we obtain

F+HI =0 , N = 0 , n3 =-n1  = k i6H n2 = 0 (12.27)

The torsional rigidity of the composite rod can be obtained from (12.22),

(12.26) and (12.27) and is given by

mS/8 2 1  2 +2k 6 1 (12.28)
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It is difficult to discuss more complex problems analytically without

specifying the number N of the composite layers, but we leave the dis-

cussion of static problems at this point.
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13. A constrained theory of rods

We consider here application of a constrained theory of rods which

has a simpler structure in comparison with the more general theory summarized

in section 10. A derivation of this constrained theory is contained in a

paper of Green and Laws (1973). For a linear elastic rod which has

symmetries of the type discussed in section 10, the equations again

separate into four groups. The flexure groups are the same as FI,2 in

(10.5) and (10.6) but the extension and torsion groups E and T are

replaced by the simpler groups E c,T Thus

Extension E

n3 = kY33  , y33 = 23u 3/z

(13.1)
3n3/z pf p3/2  2

Torsion T

CM

12 21 3 m =9612
(13.2)

2 2
am 3 /z +P( 12-X21 )  P(a + a 2 ) a2 6 1 2 /at

A further constraint is often applied to the flexure part of the

problem. Thus, in (10.5) and (10.6), ¥a3 0 while k5 and k6--, so that

the resultant force components nl,n 2 are indeterminate, i.e., not given by

a constitutive equation. Then, neglecting also the rotatory inertia terms,

(10.5) and (10.6) are replaced by

Flexure F 1

m1 =- k ls u2/z 2

(13.3)

an 2/z+ Pf2 = p;2u2/ t
2  , m1/3z -n2 +pL 23 =0
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Flexure F 2

k
m 2  k 16 a2Ul/;Z 2

(13.4)

an1/az+pff = 2U 1 /at
2  , am2/3z+n 1 -Pt 13 = 0

The constitutive coefficients kls,k 16 for a homogeneous rod of rectangular

section are the same as those given in section 10, but the coefficient k has

the value

*l 2 - 2
k k +kk -kk k

k = 2[k 1 2k 8 7 8 = ah (13.5)
4klk 2 -k7  2s33

Also - is equal to the torsional rigidity 6Dgiven in (10.13).

For a composite rod of the type discussed in section 12, the theory of

the present section may be used if we compute the coefficients kis,k16,

and k by comparing simple solutions with the corresponding four simple

solutions for extension, flexure and torsion discussed in section 12.
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14. Harmonic wave propagation along the rod

The propagation of simple harmonic waves along a composite rod of N

constituent layers may be discussed on the basis of the theory of section

11. In general the waves can be categorized into two groups, one described

by equations of the type E and 1 and the other by equations of the type T

and F2. To make the analysis definite, it is necessary to specify the

number N of the composite layers and we do not discuss this further here.

There is, however, one subgroup of waves, purely of the type F2, which can

be discussed for the general case of N constituent layers and we consider

this briefly. We assume that all variables contain a factor exp i(tz-wt)

where Ec are constants, and this factor is removed throughout. Then,

recalling the continuity conditions (11.2), we choose

613 =(S , un = u (n= 1,...,N) (14.1)

and take all the remaining components of displacements and director dis-

placements to be zero. Then, from (10.6) and section 11 we have

n2- n 2 .nn .n(k6 2 p nw2)u - i k6  I n

(14.2)

n 2 n n 2 k)6 i n = nn
16 - + k6 6 13

Assuming that the major surfaces of the composite rod of rectangular cross-

section are free from applied forces, by (10.16) the quantities fI and 
Zn

are given by

n~ a n n dx n n Ii a  n t+ xd n1.

P . = f +t )a.P Zt + t )xdIx . (14.3)nf1 = _aUtl£ 1 Z 1 13 U aU3 Z

In view of (11.2)3 , the surface conditions (12.1)3,4 and (14.3) we conclude

that

60.



N N

pnf = 0 n f 0 (14.4)
n=l 1n=l1

With the help of (14.4) we may eliminate u,6 from (14.2) to obtain the

dispersion relation

- 22 4 2 -6 62S -E24
Iw-p (k6 + 6  a 1 6E) +k6k1 J 0(14.5)

where

N N n N Nk- =nZk n  -- =Ek 6  n -- n n
6 6 ' 16 = Znk1 6  P p a 1 (14.6)

n=1 n=l n=l n=l1

When one value of w 2'k 1 6 4/p and this is the single value which would

be obtained by using the F 2 flexure equations (13.3) for the same problem.
C
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